Basic Intensity Transformation Functions – Part 1
Three basic types of functions used for image Enhancement are:
1. Linear transformation
2. Logarithmic transformation
3. Power Law transformation
Consider an Image r with intensity levels in the range [0 L-1]
1. Image Negatives
Equation : s = L – 1 – r
Consider L = 256 and r be the intensity of the image(Range 0 to 255)
MATLAB CODE:
A=imread('rice.png');
figure,imshow(A);title('Original Image');
%Image Negative
L=256;
s= (L-1)-A;
figure,imshow(s);title('Image negative -> S = L - 1 - r')
EXPLANATION:
Consider array r = [ 1 10 255 100]
S = 256 – 1 – r gives [ 254 245 0 155]
2. Log Transformation
Equation: s = c log(1 + r) where c is a constant
Consider c = 1 and r be the intensity of the image(Range 0 to 255)
%Log Transformation
%Input Image in type double
r=double(A);
C=1;
S=C*log(1+r);
Temp=255/(C*log(256));
%Display image range [0 255]
B=uint8(Temp*S);
figure,imshow(B);title('Log Transformation -> S = clog(1+r)');
EXPLANATION:
a. Convert the image to type double
b. Apply the log transformation
c. Map the obtained values to the range [0 255]
3. Power –Law (Gamma) corrections
Equation :
Where c and gamma are positive constants
Consider c = 1, gamma =0.04 and r be the intensity of the image (Range 0 to 255)
G=0.40;%Gamma =0.40
S=C*(r.^G);
Temp=255/(C*(255.^G));
%display image range [0 255]
S1=uint8(Temp*S);
figure,imshow(S1);title('Gamma corrected Image -> S = cr^\gamma \gamma = 0.40 c = 1');
Plots of the Equation:
%Power Law(Gamma) Transformation
GRng=[0.04; 0.10; 0.20; 0.40; 0.67; 1; 1.5; 2.5; 5.0; 10.0; 25.0];
R=0:255;
figure,
for i = 1 : 11
X=C*(R.^GRng(i));
Temp=256/X(256);
s=Temp*X;
plot(R,s);
title('Plot Equation S = Cr^\gamma');
xlabel('Input Intensity Level,r');
ylabel('Output Intensity Level,s');
text(R(175),s(175),['\gamma = ',num2str(GRng(i))],'HorizontalAlignment','left');
hold all
axis([0 255 0 255]);
end
EXPLANATION:
The transformation is plotted for different values of gamma for the intensity levels [ 0 255].
The output image intensity values are mapped to the range [0 255]
Keine Kommentare:
Kommentar veröffentlichen